Improved photoluminescence of organometallic vapor phase epitaxial AlGaAs using a new gettering technique on the arsine source

School of Electrical Engineering, Phillips Hall, Cornell University, Ithaca, New York 14853

(Received 7 October 1982; accepted for publication 22 October 1982)

Using an aluminum-gallium-indium ternary melt for the removal of oxygen and moisture from the arsine source, substantial improvement in the quality of organometallic vapor phase epitaxial AlGaAs can be achieved. The arsine is bubbled through the ternary melt at room temperature prior to its introduction into a low-pressure reactor. Low-temperature photoluminescence spectra indicate an improvement in the sharpness of the bound exciton transition after the use of this gettering technique.

PACS numbers: 68.55. + b, 81.15.Gh, 78.55.Hx

The growth of AlGaAs by organometallic vapor phase epitaxy (OMVPE) requires oxygen and moisture-free growth ambient to avoid compensation by an oxygen-related deep luminescence center. The major source of moisture appears to have its origin in the arsine source. Methods of gettering previously used to improve the optical film quality include the use of a molecular sieve on the arsine, incorporation of graphite baffles in the reaction cell, and the growth of epitaxial buffer layers containing aluminum.

In an earlier letter we reported the use of the Al-Ga-In ternary melt for the removal of large quantities of moisture from hydrogen and nitrogen. Similar results were expected for the purification of arsine, but direct evidence of reducing oxygen and moisture from this gas was not obtained in the previous apparatus. In this letter we report the effects on the low-temperature photoluminescence spectra of...
Al$_x$Ga$_{1-x}$As ($x \approx 0.25$) films grown in a low-pressure OMVPE apparatus with the arsine source bubbled through the metallic melt. The results indicate an improvement in the epitaxial layer quality, which demonstrates the effectiveness of this method in gettering moisture and/or oxygen from arsine.

The arsine gas used in the experiments was taken from a concentrated liquid source. The Al-Ga-In melt was prepared by the procedure described in an earlier publication. Films were grown at 76 Torr with trimethylgallium and trimethylaluminum sources. The substrate temperature and V_{III} mole ratios used in the experiments were in the range of 700–800 °C and 20–60, respectively. All films were unintentionally doped.

The film characterization was accomplished using low-temperature (3 K) photoluminescence (PL) data. The excitation wavelength and intensity for the PL measurements were 4825 Å and 100 mw/cm2, respectively. The residual acceptors were identified from the PL spectra from the work of Stringfellow and Linnebach and Mircea-Roussel et al., and the composition of the AlGaAs was obtained from calibrations obtained by Dingle et al. The bound exciton transition was identified by observing the relative change of PL intensity with excitation intensity. Additional PL experiments at longer wavelengths produced no observable luminescence due to oxygen-related deep centers. In addition, the background carrier concentration was evaluated using C-V measurements.

The effects on treating arsine with the ternary melt are most pronounced at lower growth temperatures. For example, PL spectra are shown in Fig. 1 for Al$_{0.26}$Ga$_{0.74}$As layers grown with and without the melt at 700 °C at a V_{III} ratio of 40. This illustrates that the PL efficiency of the bound exciton (BE) is improved by a factor in excess of 5, and its half-width is reduced to less than 5 meV after the use of this gettering technique. The sharpness of this PL spectrum represents an improvement in the state of the art for OMVPE AlGaAs of this alloy composition. The background electron concentration of these films grown at 700 °C was approximately 1×10^{15} cm$^{-3}$. At higher substrate temperature, e.g., 800 °C, the bound exciton PL efficiency is increased slightly by treating the arsine, but this occurs at the expense of greatly increased carbon incorporation in the film. Carbon is the dominant acceptor as seen in Figs. 1 and 2 for films grown at 700 and 800 °C. However, small zinc concentrations were evident when the spectra were taken at higher excitation intensities.

At a given substrate temperature, the bound exciton PL efficiency increases by over an order of magnitude with increased V_{III} ratio. This is illustrated in Fig. 2 for Al$_{0.24}$Ga$_{0.76}$As layers grown at 800 °C using the gettering technique. Further improvements in the bound exciton structure would be expected if higher V_{III} ratios could be used. Nevertheless, we find that the best linewidths and PL efficiency of the bound excitation are obtained at lower growth temperatures near 700 °C when the gettering technique is used. Not only is carbon incorporation greatly reduced at this temperature, but the net carrier concentration is also lower (1×10^{16} cm$^{-3}$). Films grown at 800 °C have electron concentrations of about 5×10^{16} cm$^{-3}$ when gettering is used. When gettering is not used this value drops to about 1×10^{16} cm$^{-3}$, indicating increased compensation by oxy-
Surface chemical reactions on In$_{0.53}$Ga$_{0.47}$As

H. J. Stocker and D. E. Aspnes

Bell Laboratories, Murray Hill, New Jersey 07974

(Received 19 July 1982; accepted for publication 14 October 1982)

Dark currents on In$_{0.53}$Ga$_{0.47}$As mesa photodiodes can be reduced significantly by treating the surfaces with H$_2$SO$_4$·H$_2$O$_2$·XH$_2$O (10 ≤ X ≤ 500) instead of the usual bromine-methanol etch. Using spectroscopic ellipsometry we show that peroxide etches form porous amorphous As or oxide overlayers according to whether the pH values are less than or greater than ~3. The identity of these overlayers is established by their dielectric response and chemical reactivity.

PACS numbers: 85.60.Dw, 81.60.Dq

The magnitude of reverse leakage ("dark") currents of In$_{0.53}$Ga$_{0.47}$As/InP p-n junction photodiodes is of crucial importance in determining their performance as photodetectors in fiberoptic receivers. In an empirical study of the effect of surface treatments on mesa diodes, we discovered that 1:1:X [H$_2$SO$_4$·H$_2$O$_2$·XH$_2$O] etchants substantially reduced dark currents as compared to bromine-methanol (BrM) etchants. In addition, diodes etched in 1:1:X were more stable over extended periods of time than BrM-etched diodes.

Photodetectors are made by diffusing Zn at 500–550 °C (Ref. 2) to a depth of 1.5–3 μm into 4–7-μm-thick layers of nominally undoped (2–6×1015 cm$^{-3}$) n-type In$_{0.53}$Ga$_{0.47}$As grown via liquid phase epitaxy (LPE) on [100] InP:S or InP:S substrates. Ohmic contacts were then formed by alloying evaporated or electroplated Au-Zn and Au-Sn films at $T = 400$ °C for 10 s. Photolithographically defined mesas were then etched with either 1% BrM or 1:1:10 (H$_2$SO$_4$·:H$_2$O$_2$·:H$_2$O). In one instance, grown p-n junctions were investigated with similar results.

Figure 1 illustrates the dramatic reduction of the reverse leakage current (dark current) of mesa diode attainable by etching with 1:1:X. The dark current of a 6×10$^{-5}$ cm$^{-2}$ diode at −10 V is reduced from the 10-nA value obtained with BrM to 1 nA after 20 s in 1:1:50. Because the capacitance changed only from 0.39 to 0.37 pf, we can conclude that the mesa area has been reduced by no more than 6% by the re-etching procedure. This is confirmed by direct visual inspection and is also consistent with the etch rate of ~2200 Å/min for 1:1:50. The effectiveness of the 1:1:X etch in reducing leakage current has been established with data taken on several hundred diodes, both on the wafers and after bonding.

These empirical results motivated us to study the effect of these etches on large area (3×3 mm2) (100) surfaces of In$_{0.53}$Ga$_{0.47}$As. Our approach is spectroscopic ellipsometry, where the apparent or pseudodielectric function $\langle \varepsilon \rangle = \langle \varepsilon_1 \rangle + i\langle \varepsilon_2 \rangle$ is measured at the E_2 peak at 4.50 eV of the ε_2 spectrum of the substrate material as a function of surface treatment.3,4 The $\langle \varepsilon \rangle$ values provide a sensitive and unambiguous indication of surface quality and of the presence or absence of films in the thickness range below 100 Å.4,5 We also use this method to obtain information about the compositions of films by studying their resistance to attack by selected chemical reagents and to compare the results with the known solubilities$^{6-9}$ of the oxides and metals under consideration. Instrumentation and techniques have been described in detail elsewhere.4,9

The results of various chemical treatments are shown as...